327 research outputs found

    Novel nitrogen-based organosulfur electrodes for advanced intermediate temperature batteries

    Get PDF
    Advanced secondary batteries operating at intermediate temperatures (100 to 200 C) have attracted considerable interest due to their inherent advantages (reduced corrosion and safety risks) over higher temperature systems. Current work in this laboratory has involved research on a class of intermediate temperature Na/beta double prime- alumina/RSSR batteries conceptually similar to Na/S cells, but operating within a temperature range of 100 to 150 C, and having an organosulfur rather than inorganic sulfur positive electrode. The organosulfur electrodes are based on the reversible, two electron eduction of organodisulfides to the corresponding thiolate anions, RSSR + 2 electrons yield 2RS(-), where R is an organic moiety. Among the advantages of such a generic redox couple for battery research is the ability to tailor the physical, chemical, and electrochemical properties of the RSSR molecule through choice of the organic moiety. The viscosity, liquidus range, dielectric constant, equivalent weight, and redox potential can in fact be verified in a largely predictable manner. The current work concerns the use of multiple nitrogen organosulfur molecules, chosen for application in Na/RSSR cells for their expected oxidizing character. In fact, a Na/RSSR cell containing one of these materials, the sodium salt of 5-mercapto 1-methyltetrazole, yielded the highest open circuit voltage obtained yet in the laboratory; 3.0 volts in the charged state and 2.6 volts at 100 percent discharge. Accordingly, the cycling behavior of a series of multiple nitrogen organodisulfides as well as polymeric organodisulfides are presented in this manuscript

    A genetic algorithm for the non-parametric inversion of strong lensing systems

    Full text link
    We present a non-parametric technique to infer the projected-mass distribution of a gravitational lens system with multiple strong-lensed images. The technique involves a dynamic grid in the lens plane on which the mass distribution of the lens is approximated by a sum of basis functions, one per grid cell. We used the projected mass densities of Plummer spheres as basis functions. A genetic algorithm then determines the mass distribution of the lens by forcing images of a single source, projected back onto the source plane, to coincide as well as possible. Averaging several tens of solutions removes the random fluctuations that are introduced by the reproduction process of genomes in the genetic algorithm and highlights those features common to all solutions. Given the positions of the images and the redshifts of the sources and the lens, we show that the mass of a gravitational lens can be retrieved with an accuracy of a few percent and that, if the sources sufficiently cover the caustics, the mass distribution of the gravitational lens can also be reliably retrieved. A major advantage of the algorithm is that it makes full use of the information contained in the radial images, unlike methods that minimise the residuals of the lens equation, and is thus able to accurately reconstruct also the inner parts of the lens.Comment: 11 pages, accepted for publication by MNRA

    On the kinematic signature of a central Galactic bar in observed star samples

    Full text link
    A quasi self-consistent model for a barred structure in the central regions of our Galaxy is used to calculate the signature of such a triaxial structure on the kinematical properties of star samples. We argue that, due to the presence of a velocity dispersion, such effects are much harder to detect in the stellar component than in the gas. It might be almost impossible to detect stellar kinematical evidence for a bar using only l-v diagrams, if there is no a priori knowledge of the potential. Therefore, we propose some test parameters that can easily be applied to observed star samples, and that also incorporate distances or proper motions. We discus the diagnostic power of these tests as a function of the sample size and the bar strength. We conclude that about 1000 stars would be necessary to diagnose triaxiality with some statistical confidence.Comment: 9 pages + 8 PS figures, uses aas2pp4.sty. Accepted by Ap

    The Three-Dimensional Mass Distribution in NGC 1700

    Get PDF
    A variety of modeling techniques is used with surface photometry from the literature and recently acquired high-accuracy stellar kinematic data to constrain the three-dimensional mass distribution in the luminous cuspy elliptical galaxy NGC 1700. First, we model the radial velocity field and photometry, and, using a Bayesian technique, estimate the triaxiality T and short-to-long axis ratio c in five concentric annuli between approximately 1 and 3 effective radii. The results are completely consistent with T being constant inside about 2.5 r_e (36 arcsec; 6.7/h kpc). Adding an assumption of constant T as prior information gives an upper limit of T < 0.16 (95% confidence); this relaxes to T < 0.22 if it is also assumed that there is perfect alignment between the angular momentum and the galaxy's intrinsic short axis. Near axisymmetry permits us then to use axisymmetric models to constrain the radial mass profile. Using the Jeans (moment) equations, we demonstrate that 2-integral, constant-M/L models cannot fit the data; but a 2-integral model in which the cumulative enclosed M/L increases by a factor of roughly 2 from the center out to 12/h kpc can. Three-integral models constructed by quadratic programming show that, in fact, no constant-M/L model is consistent with the kinematics. Anisotropic 3-integral models with variable M/L, while not uniquely establishing a minimum acceptable halo mass, imply, as do the moment models, a cumulative M/L_B approximately 10 h at 12/h kpc. We conclude that NGC 1700 represents the best stellar dynamical evidence to date for dark matter in elliptical galaxies.Comment: 26 pages, Latex, AASTeX v4.0, with 11 eps figures. To appear in The Astronomical Journal, January 1999. Figures 1 and 3 are color but are readable in b/

    Kinematics of elliptical galaxies with a diffuse dust component

    Full text link
    Observations show that early-type galaxies contain a considerable amount of interstellar dust, most of which is believed to exist as a diffusely distributed component. We construct a four-parameter elliptical galaxy model in order to investigate the effects of such a smooth absorbing component on the projection of kinematic quantities, such as the line profiles and their moments. We investigate the dependence on the optical depth and on the dust geometry. Our calculations show that both the amplitude and the morphology of these quantities can be significantly affected. Dust effects should therefore be taken in consideration when interpreting photometric and kinematic properties, and correlations that utilize these quantities.Comment: 12 pages, 9 figures, accepted for publication in MNRA

    Distribution functions for evolved stars in the inner galactic Plane

    Get PDF
    We present dynamical distribution functions for evolved stars in the inner galactic plane. We use an axisymmetric, two-component Stackel potential that satisfies recent constraints on the galactic potential, amongst others a slightly declining local rotation curve. We show that this potential is adequate to model stellar-kinematic samples with radial extent ranging from to the first three projected moments provides a very good global representation of the data but fails to reproduce the central dispersion, the central apparent scaleheight and the cylindrical rotation at intermediate longitudes. All these features are fitted well by a three--integral model. We discuss various properties of the 2I- and 3I models and the implications for galactic structure. A somewhat thicker disk component is needed to explain the distribution of older AGB stars in the plane; this component also fits the kinematics at higher latitudes better. We find that the Disk and the Bulge, as traced by AGB stars, are very similar dynamically and could well be one and the same component. There is a dynamically distinct component in the inner 100 pc of the Bulge, however

    The Compression of Dark Matter Halos by Baryonic Infall

    Full text link
    The initial radial density profiles of dark matter halos are laid down by gravitational collapse in hierarchical structure formation scenarios and are subject to further compression as baryons cool and settle to the halo centers. We here describe an explicit implementation of the algorithm, originally developed by Young, to calculate changes to the density profile as the result of adiabatic infall in a spherical halo model. Halos with random motion are more resistant to compression than are those in which random motions are neglected, which is a key weakness of the simple method widely employed. Young's algorithm results in density profiles in excellent agreement with those from N-body simulations. We show how the algorithm may be applied to determine the original uncompressed halos of real galaxies, a step which must be computed with care in order to enable a confrontation with theoretical predictions from theories such as LCDM.Comment: Revised version for ApJ. 8 pages, 8 figures, latex uses emulateap

    Anisotropic distribution functions for spherical galaxies

    Full text link
    A method is presented for finding anisotropic distribution functions for stellar systems with known, spherically symmetric, densities, which depends only on the two classical integrals of the energy and the magnitude of the angular momentum. It requires the density to be expressed as a sum of products of functions of the potential and of the radial coordinate. The solution corresponding to this type of density is in turn a sum of products of functions of the energy and of the magnitude of the angular momentum. The products of the density and its radial and transverse velocity dispersions can be also expressed as a sum of products of functions of the potential and of the radial coordinate. Several examples are given, including some of new anisotropic distribution functions. This device can be extended further to the related problem of finding two-integral distribution functions for axisymmetric galaxies.Comment: 5 figure

    Dark Matter in Dwarf Spheroidals I: Models

    Get PDF
    This paper introduces a new two-parameter family of dwarf spheroidal (dSph) galaxy models. The density distribution has a Plummer profile and falls like the inverse fourth power of distance in projection, in agreement with the star-count data. The first free parameter controls the velocity anisotropy, the second controls the dark matter content. The dark matter distribution can be varied from one extreme of mass-follows-light through a near-isothermal halo with flat rotation curve to the other extreme of an extended dark halo with harmonic core. This family of models is explored analytically in some detail -- the distribution functions, the intrinsic moments and the projected moments are all calculated. For the nearby Galactic dSphs, samples of hundreds of discrete radial velocities are becoming available. A technique is developed to extract the anisotropy and dark matter content from such data sets by maximising the likelihood function of the sample of radial velocities. This is constructed from the distribution function and corrected for observational errors and the effects of binaries. Tests on simulated data sets show that samples of 1000 discrete radial velocities are ample to break the degeneracy between mass and anisotropy in the nearby dSphs. Interesting constraints can already be placed on the distribution of the dark matter with samples of 160 radial velocities (the size of the present-day data set for Draco).Comment: 16 pages, version in press at MNRA

    Non-parametric inversion of gravitational lensing systems with few images using a multi-objective genetic algorithm

    Full text link
    Galaxies acting as gravitational lenses are surrounded by, at most, a handful of images. This apparent paucity of information forces one to make the best possible use of what information is available to invert the lens system. In this paper, we explore the use of a genetic algorithm to invert in a non-parametric way strong lensing systems containing only a small number of images. Perhaps the most important conclusion of this paper is that it is possible to infer the mass distribution of such gravitational lens systems using a non-parametric technique. We show that including information about the null space (i.e. the region where no images are found) is prerequisite to avoid the prediction of a large number of spurious images, and to reliably reconstruct the lens mass density. While the total mass of the lens is usually constrained within a few percent, the fidelity of the reconstruction of the lens mass distribution depends on the number and position of the images. The technique employed to include null space information can be extended in a straightforward way to add additional constraints, such as weak lensing data or time delay information.Comment: 9 pages, accepted for publication by MNRA
    corecore